
Feature Engineering

• Most creative aspect of  Data Science. 

• Treat like any other creative endeavor, like writing a 
comedy show: 

• Hold brainstorming sessions 

• Create templates / formula’s 

• Check/revisit what worked before



Categorical Features

• Nearly always need some treatment 

• High cardinality can create very sparse data 

• Difficult to impute missing



Onehot encoding

• One-of-K encoding on an array of  length K. 

• Basic method: Used with most linear algorithms 

• Dropping first column avoids collinearity 

• Sparse format is memory-friendly 

• Most current implementations don’t gracefully treat 
missing, unseen variables



Onehot encoding

Sample: ["BR"]

country     country=NL country=BR country=US
-------     ---------- ---------- ----------
NL      => [         0,         1,         0]
BR
US

Encoded dense: [0, 1, 0]
Encoded sparse: 2:1



Hash encoding

• Does “OneHot-encoding” with arrays of  a fixed 
length. 

• Avoids extremely sparse data 

• May introduce collisions 

• Can repeat with different hash functions and bag result for 
small bump in accuracy 

• Collisions usually degrade results, but may improve it. 

• Gracefully deals with new variables (eg: new user-agents)



Hash encoding

Sample: ["BR"]

hash("BR") => `2`

country     hash1 hash2 hash3 hash4 hash5
-------     ----- ----- ----- ----- -----
NL      => [    0     1,    0     0,    0]
BR
US

Encoded dense: [0, 1, 0, 0, 0]
Encoded sparse: 2:1



Label encoding

• Give every categorical variable a unique numerical 
ID 

• Useful for non-linear tree-based algorithms 

• Does not increase dimensionality 

• Randomize the cat_var -> num_id mapping and 
retrain, average, for small bump in accuracy.



Label encoding

Sample: ["Queenstown"]

city            city 
-----------     ----
Cherbourg          1
Queenstown   =>    2
Southampton        3

Encoded: [2]



Count encoding

• Replace categorical variables with their count in the 
train set 

• Useful for both linear and non-linear algorithms 

• Can be sensitive to outliers 

• May add log-transform, works well with counts 

• Replace unseen variables with `1` 

• May give collisions: same encoding, different variables



Count encoding
Sample: ["A6GHBD78"]

teacher_ID     teacher_ID
----------     ----------
DEADB33F                4
A6GHBD78                3
DEADB33F                4
FCKGWRHQ   =>           1
DEADB33F                4
A6GHBD78                3
A6GHBD78                3
DEADB33F                4

encoded: [3]



LabelCount encoding

• Rank categorical variables by count in train 
set 

• Useful for both linear and non-linear algorithms 

• Not sensitive to outliers 

• Won’t give same encoding to different variables 

• Best of  both worlds



LabelCount encoding

tld    tld
---    ---
nl       3
nl       3
nl       3
nl  =>   3
de       2
de       2
fr       1
fr       1



Target encoding

• Encode categorical variables by their ratio of  target (binary 
classification or regression) 

• Be careful to avoid overfit! 

• Form of  stacking: single-variable model which outputs average target 

• Do in cross-validation manner 

• Add smoothing to avoid setting variable encodings to 0. 

• Add random noise to combat overfit 

• When applied properly: Best encoding for both linear and non-linear



Target encoding

role        y      role  
---------   -      ----
manager   | 1      0.5
engineer  | 1      0.66 
scientist | 1  =>  1. 
manager   | 0      0.5
engineer  | 0      0.66
engineer  | 1      0.66



Category Embedding

• Use a Neural Network to create dense embeddings 
from categorical variables. 

• Map categorical variables in a function approximation 
problem into Euclidean spaces 

• Faster model training. 

• Less memory overhead. 

• Can give better accuracy than 1-hot encoded. 

• https://arxiv.org/abs/1604.06737

https://arxiv.org/abs/1604.06737


Category Embedding

role        role 3-D embedding  
---------   —————————————————-
manager   | [0.05, 0.10, 0.96]
engineer  | [0.72, 0.66, 0.17]
scientist | [0.75, 0.62, 0.15] 
manager   | [0.05, 0.10, 0.96] 
engineer  | [0.72, 0.66, 0.17] 
engineer  | [0.72, 0.66, 0.17]



NaN encoding

• Give NaN values an explicit encoding instead 
of  ignoring 

• NaN-values can hold information 

• Be careful to avoid overfit! 

• Use only when NaN-values in train and test set are 
caused by the same, or when local validation proves 
it holds signal



NaN encoding

Sample = [NaN]

UA         UA=mobile UA=tablet UA=NaN
-------    --------- --------- ------
mobile             0         0      1
tablet
mobile  => 
NaN
mobile

Encoded = [0, 0, 1]



Polynomial encoding

• Encode interactions between categorical 
variables 

• Linear algorithms without interactions can not solve 
the XOR problem 

• A polynomial kernel *can* solve XOR 

• Explodes the feature space: use FS, hashing and/or 
VW



Polynomial encoding

A B   y    A=1*B=1 A=0*B=1 A=1*B=0 A=0*B=0   y
- -   -    ------- ------- ------- -------   -
1 1 | 1          1       0       0       0 | 1
0 1 | 0 =>       0       1       0       0 | 0
1 0 | 0          0       0       1       0 | 0
0 0 | 1          0       0       0       1 | 1



Expansion encoding

• Create multiple categorical variables from a single variable 

• Some high cardinality features, like user-agents, hold far more 
information in them: 

• is_mobile? 

• is_latest_version? 

• Operation_system 

• Browser_build 

• Etc.



Expansion encoding

Mozilla/5.0 (Macintosh; Intel Mac OS X 
10_10_4) AppleWebKit/537.36 (KHTML, like 
Gecko) Chrome/53.0.2785.143 Safari/537.36

|
v

UA1    UA2           UA3     UA4 UA5 
------ ------------- ------- --- -------
Chrome 53.0.2785.143 Desktop Mac 10_10_4



Consolidation encoding

• Map different categorical variables to the 
same variable 

• Spelling errors, slightly different job descriptions, 
full names vs. abbreviations 

• Real data is messy, free text especially so



Expansion encoding

company_desc         desc1 company_desc2
------------------   ----- -------------
Shell                Shell   Gas station 
shel                 Shell   Gas station
SHELL                Shell   Gas station
Shell Gasoline       Shell   Gas station
BP                =>    BP   Gas station
British Petr.           BP   Gas station
B&P                     BP   Gas station
BP Gas Station          BP   Gas station
bp                      BP   Gas station
Procter&Gamble         P&G  Manufacturer



Numerical Features

• Can be more readily fed into algorithms 

• Can constitute floats, counts, numbers 

• Easier to impute missing data



Rounding

• Round numerical variables 

• Form of  lossy compression: retain most significant 
features of  the data. 

• Sometimes too much precision is just noise 

• Rounded variables can be treated as categorical 
variables 

• Can apply log-transform before rounding



Rounding

age          age1 age2
-------      ---- ----
23.6671        23    2
23.8891        23    2
22.1261  =>    22    2
19.5506        19    1
18.2114        18    1 



Binning

• Put numerical variables into a bin and 
encode with bin-ID 

• Binning can be set pragmatically, by quantiles, 
evenly, or use models to find optimal bins 

• Can work gracefully with variables outside of  
ranges seen in the train set



Binning

risk_score    rs[-inf,33] rs[33,66] rs[66,inf]
----------    ----------- --------- ----------
        15              1         0          0
        77              0         0          1
        78 =>           0         0          1
        55              0         1          0  
        42              0         1          0



Binning



Scaling

• Scale to numerical variables into a certain 
range 

• Standard (Z) Scaling 

• MinMax Scaling 

• Root scaling 

• Log scaling



Imputation

• Impute missing variables 

• Hardcoding can be combined with imputation 

• Mean: Very basic 

• Median: More robust to outliers 

• Ignoring: just postpones the problem 

• Using a model: Can expose algorithmic bias



Imputation

wage hours gender | y      wage hours | gender_y
---- ----- ------ | -      ---- ----- | --------
1600 40    0      | 1      1600 40    | 0 
2200 50    1      | 1      2200 50    | 1
1800 36    0      | 0  =>  1800 36    | 0
2100 45    1      | 0      2100 45    | ?
2050 60    NaN    | 0      2050 60    | ?
1650 36    0      | 1      1650 36    | ?



Interactions

• Specifically encodes the interactions between 
numerical variables 

• Try: Substraction, Addition, Multiplication, Divison 

• Use: Feature selection by statistical tests, or trained 
model feature importances 

• Ignore: Human intuition; weird interactions can 
give significant improvement!



Non-linear encoding for linear algo’s

• Hardcode non-linearities to improve linear 
algorithms 

• Polynomial kernel 

• Leafcoding (random forest embeddings) 

• Genetic algorithms 

• Locally Linear Embedding, Spectral Embedding, t-
SNE



Row statistics

• Create statistics on a row of  data 

• Number of  NaN’s,  

• Number of  0’s 

• Number of  negative values 

• Mean, Max, Min, Skewness, etc.



Temporal Variables

• Temporal variables, like dates, need better local 
validation schemes (like backtesting) 

• Easy to make mistakes here 

• Lots of  opportunity for major improvements



Projecting to a circle

• Turn single features, like day_of_week, into 
two coordinates on a circle 

• Ensures that distance between max and min is the 
same as min and min +1. 

• Use for day_of_week, day_of_month, hour_of_day, 
etc.



Trendlines

• Instead of  encoding: total spend, encode 
things like: Spend in last week, spend in last 
month, spend in last year. 

• Gives a trend to the algorithm: two customers with 
equal spend, can have wildly different behavior — 
one customer may be starting to spend more, while 
the other is starting to decline spending.



Closeness to major events

• Hardcode categorical features like: 
date_3_days_before_holidays:1 

• Try: National holidays, major sport events, 
weekends, first Saturday of  month, etc. 

• These factors can have major influence on spending 
behavior.



Spatial Variables

• Spatial variables are variables that encode a location 
in space 

• Examples include: GPS-coordinates, cities, 
countries, addresses



Categorizing location

• Kriging 

• K-means clustering 

• Raw latitude longitude 

• Convert cities to latitude longitude 

• Add zip codes to streetnames



Closeness to hubs

• Find closeness between a location to a major 
hub 

• Small towns inherit some of  the culture/context of  
nearby big cities 

• Phone location can be mapped to nearby businesses 
and supermarkets



Spatial fraudulent behavior

• Location event data can be indicative of  
suspicious behavior 

• Impossible travel speed: Multiple simultaneous 
transactions in different countries 

• Spending in different town than home or shipping 
address 

• Never spending at the same location



Exploration

• Data exploration can find data health issues, 
outliers, noise, feature engineering ideas, 
feature cleaning ideas. 

• Can use: Console, Notebook, Pandas 

• Try simple stats: Min, max 

• Incorporate the target so find correlation between 
signal.



Iteration / Debugging

• Feature engineering is an iterative process: 
Make your pipelines suitable for fast 
iteration. 

• Use sub-linear debugging: Output intermediate 
information on the process, do spurious logging. 

• Use tools that allow for fast experimentation 

• More ideas will fail, than ideas will work



Label Engineering

• Can treat a label/target/dependent variable as a 
feature of  the data and vice versa.  

• Log-transform: y -> log(y+1) | exp(y_pred) - 1 

• Square-transform 

• Box-Cox transform 

• Create a score, to turn binary target in regression. 

• Train regressor to predict a feature not available in test set.



Natural Language Processing

• Can use the same ideas from categorical features. 

• Deep learning (automatic feature engineering) 
increasingly eating this field, but shallow learning 
with well-engineered features is still competitive. 

• High sparsity in data introduces you to “curse of  
dimensionality” 

• Many opportunities for feature engineering:



Natural Language Processing

• Lowercasing,  

• Removing non-alphanumeric,  

• Repairing,  

• Encoding punctuation marks,  

• Tokenizing,  

• Token-grams,  

• skipgrams,  

• char-grams,  

• Removing stopwords,  

• Removing rare words 

• and very common words,  

• Spelling Correction,

• Chopping,  

• Stemming,  

• Lemmatization,  

• Document features,  

• Entitity Insertion & Extraction 

• Simplification,  

• Word2Vec and GloVe / Doc2Vec,  

• String Similarity,  

• Reading level,  

• Nearest Neighbors,  

• TF*IDF,  

• BayesSVM, Vectorization, LDA, LSA.



Cleaning

• Lowercasing: Make tokens independant of  capitalisation: 
“I work at NASA” -> “i work at nasa”. 

• Unidecode: Convert accented characters to their ascii-
counterparts: “Memórias Póstumas de Brás Cubas” -> 
“Memorias Postumas de Bras Cubas” 

• Removing non-alphanumeric: Clean text by removing 
anything not in [a-z] [A-Z] [0-9]. “Breaking! Amsterdam 
(2009)” -> “Breaking Amsterdam 2009” 

• Repairing: Fix encoding issues or trim intertoken spaces. 
“C a s a  C a f  &eacute;” -> “Casa Café”



Tokenizing

• Encode punctuation marks: Hardcode “!” and “?” as tokens. 

• Tokenize: Chop sentences up in word tokens. 

• N-Grams: Encode consecutive tokens as tokens: “I like the 
Beatles” -> [“I like”, “like the”, “the Beatles”] 

• Skip-grams: Encode consecutive tokens, but skip a few: “I like 
the Beatles” -> [“I the”, “like Beatles”] 

• Char-grams: Same as N-grams, but character level: “Beatles” -
> [“Bea”, “eat”, “atl”, “tle”, “les”] 

• Affixes: Same as char-grams, but only the postfixes and prefixes



Removing

• Stopwords: Remove words/tokens that appear in 
stopword lists. 

• Rare words: Remove words that only appear few 
times in training set. 

• Common words: Remove extremely common 
words that may not be in a stopword list.



Roots

• Spelling correction: Change tokens to their 
correct spelling. 

• Chop: Take only the first n (8) characters of  a 
word. 

• Stem: Reduce a word/token to its root. “cars” -> 
“car” 

• Lemmatize: Find semantic root “never be late” -> 
“never are late”



Enrich

• Document features: Count number of  spaces, tabs, 
newlines, characters, tokens, etc. 

• Entity insertion: Add more general specifications to 
text “Microsoft releases Windows” -> “Microsoft 
(company) releases Windows (application)” 

• Parse Trees: Parse a sentence into logic form: “Alice hits 
Bill” -> Alice/Noun_subject hits/Verb Bill/Noun_object. 

• Reading level: Compute the reading level of  a 
document.



Similarities

• Token similarity: Count number of  tokens that 
appear in two texts. 

• Compression distance: Look if  one text can be 
compressed better using another text. 

• Levenshtein/Hamming/Jaccard Distance: Check 
similarity between two strings, by looking at number of  
operations needed to transform one in the other. 

• Word2Vec / Glove: Check cosine similarity between 
two averaged vectors.



TF-IDF

• Term Frequency: Reduces bias to long 
documents. 

• Inverse Document Frequency: Reduces bias to 
common tokens. 

• TF-IDF: Use to identify most important tokens in a 
document, to remove unimportant tokens, or as a 
preprocessing step to dimensionality reduction.



Dimensionality Reduction

• PCA: Reduce text to 50 or 100-dimensional vector. 

• SVD: Reduce text to 50 or 100-dimensional vector. 

• LDA: TF-IDF followed by SVD. 

• LSA: Create topic vectors.



External models

• Sentiment Analyzers: Get a vector for negative 
or positive sentiment for any text. 

• Topic models: Use another dataset to create topic 
vectors for a new dataset.



Neural Networks & Deep Learning

• Neural networks claim end-to-end automatic 
feature engineering. 

• Feature engineering dying field? 

• No! Moves the focus to architecture engineering 

• And despite promise: computer vision uses features 
like: HOG, SIFT, whitening, perturbation, image 
pyramids, rotation, z-scaling, log-scaling, frame-
grams, external semantic data, etc.



Leakage / Golden Features

• Feature engineering can help exploit leakage. 

• Reverse engineer:  

• Reverse MD5 hash with rainbow tables.  

• Reverse TF-IDF back to Term Frequency 

• Encode order of  samples data set. 

• Encode file creation dates. 

• Rule mining: 

• Find simple rules (and encode these) to help your model.



Resources & Further Reading
• Kaggle forums & kernels: Far0n, KazAnova, Fchollet, Abhishek, Gilberto Titericz, Leustagos, Owen Zhang, Gert 

Jacobusse … 

• Introduction: http://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-features-and-how-
to-get-good-at-it/ 

• Books:  

• Mastering Feature Engineering (Alice Zheng),  

• Feature Extraction (Isabelle Guyon et al.) 

• Blogs:  

• https://smerity.com/articles/2016/architectures_are_the_new_feature_engineering.html  

• http://hunch.net/~jl/projects/hash_reps/ 

• https://blogs.technet.microsoft.com/machinelearning/2014/09/24/online-learning-and-sub-linear-debugging/ 

• http://blog.kaggle.com/2015/12/03/dato-winners-interview-1st-place-mad-professors/ 

• http://blog.kaggle.com/2016/08/24/avito-duplicate-ads-detection-winners-interview-1st-place-team-devil-team-
stanislav-dmitrii/ 

• http://www.slideshare.net/DataRobot/featurizing-log-data-before-xgboost 

• Data: https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs 

• Software: https://github.com/trevorstephens/gplearn

https://smerity.com/articles/2016/architectures_are_the_new_feature_engineering.html
http://hunch.net/~jl/projects/hash_reps/
https://blogs.technet.microsoft.com/machinelearning/2014/09/24/online-learning-and-sub-linear-debugging/
http://blog.kaggle.com/2015/12/03/dato-winners-interview-1st-place-mad-professors/
http://blog.kaggle.com/2016/08/24/avito-duplicate-ads-detection-winners-interview-1st-place-team-devil-team-stanislav-dmitrii/
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://github.com/trevorstephens/gplearn

